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ABSTRACT
The analysis of complex front-ends containing many non-

linear devices and supporting signal waveforms with many
spectral components can be efficiently handled by the har-
monic-balance technique coupled with Krylov-subspace meth-
ods. The paper extends this approach to the computation of the
front-end noise figure in the presence of a strong interfering
signal.

INTRODUCTION
Microwave front-ends for modern telecommunications

systems such as mobile radio consist of integrated analog or
digital circuits of high topological complexity. In particular,
thanks to the widespread use of MMIC and/or Silicon IC tech-
nology, traditional single-function circuits such as amplifiers
or mixers tend to be merged into multifunctional blocks, the
final objective being represented by the single-chip transceiver.
Microwave CAD techniques must obviously catch up with this
rapid technological advance in order to retain their traditional
role of indispensable support to R&D engineering. This
explains the quickly growing attention that is being devoted to
nonlinear simulation techniques allowing large problems of
several tens of thousands equations (or even more) to be
efficiently tackled.

The extension of harmonic-balance (HB) analysis to
large-size problems has been pursued by several authors. The
proposed algorithms are normally based on the Newton-nodal
HB approach [1], and rely on Krylov-subspace or other itera-
tive methods for finding the Newton update at each step of the
main iteration [2], [3]. This avoids the need for storing and fac-
torizing the Jacobian matrix. As an alternative, the inexact-
Newton harmonic balance (INHB) discussed in [4] makes use
of the piecewise HB approach and of inexact Newton methods
for solving the nonlinear system. With the INHB, only an ap-
proximate Newton update is computed at all but the last few
steps, which considerably reduces the total number of matrix-
vector multiplications [4]. In addition, the number of unknown
waveforms equals the number of device ports, which is always
significantly smaller than the number of circuit nodes. In this
way the total number of equations is effectively minimized,
and so is the memory required to store the basis vectors of the
Krylov subspace.

In all cases, this class of methods has only been applied
until now to the computation of the signal properties of
RF/microwave front-ends. On the other hand, for system simu-
lation purposes front-end noise is also of primary importance.
The main objective of this paper is to extend the INHB tech-
nique to the noise analysis of large nonlinear RF/microwave
circuits. Specifically, the task addressed in the paper is the
computation of the front-end noise figure (NF) in the presence
of an interfering signal of arbitrary strength. This problem is of
primary importance especially in a personal and mobile com-

munications environment, but to the authors' knowledge has
not yet received a rigorous CAD-oriented solution. The results
provide direct information on receiver sensitivity (including
minimum detectable signal) and desensitization due to interfer-
ence [5]. The problem is particularly demanding in terms of
computer resources, since it requires a perturbative analysis of
the quasi-periodic regime resulting from the intermodulation of
the LO and interfering signals. Thus for large front-ends this
kind of analysis cannot be afforded by ordinary nonlinear
simulation techniques.

FRONT-END NOISE FIGURE
We assume that both the local oscillator and the interferer

are sinusoidal, with angular frequencies ωLO, ωINT, respec-
tively. Similarly, the RF and IF frequencies will be denoted by
ωRF, ωIF, respectively. In a highly polluted electromagnetic en-
vironment, the interferer may be larger than the useful RF sig-
nal by many orders of magnitude, and may even fall within the
passband of the RF preselection filter. In such situations, the
interferer may produce a degradation of the front-end noise
performance by three different mechanisms. i) Since the inter-
ferer is relatively large, it may drive the small-signal preampli-
fier stages and/or the mixer (especially if active) into gain com-
pression, which results in a drop of the receiver conversion
gain, and in a noise figure increase. ii) All the noise compo-
nents located at an offset ±ωIF from ωINT will beat with the in-
terferer in the device nonlinearities, and produce additional
noise contributions superimposed on the down-converted (IF)
carrier. iii) Reciprocally, the interferer noise components lo-
cated at an offset ±ωIF from ωLO will beat with the local oscil-
lator, and will produce additional contributions to the IF noise
[5]. Thus, assuming that noise power is very small, the noise
calculations of interest require a first-order perturbation analy-
sis of the quasi-periodic steady state [6] generated by the inter-
modulation of the (noiseless) LO and interferer signals. On the
other hand, since the NF is a linear concept [7], the RF signal
may be treated as a small perturbation of the same quasi-peri-
odic regime.

The perturbative analysis of a quasi-periodic steady state
was discussed in detail in [6], and will not be repeated here.
For later convenience, we recall that in the vicinity of the
steady state the nonlinear subnetwork may be described by a
set of complex linear equations relating the vectors δV, δI , δX
of all the perturbation phasors on voltages, currents, and state
variables, at all the sidebands. This system takes on the form

δV = P δX   ;        δI  = Q δX (1)

 (1) are the conversion equations of the nonlinear subnetwork,
and P, Q are its (complex) conversion matrices of size nDnS,
where nS is the total number of noise sidebands, and nD is the
number of nonlinear subnetwork (device) ports.

0-7803-4471-5/98/$10.00 (c) 1998 IEEE



The noise sources to be considered in the analysis are
those introduced by the nonlinear devices, by the linear sub-
network, by the local oscillator, and by the noise sidebands of
the interfering signal. These contributions have different
physical origins, and may thus be superimposed in power.
Also, in each case the computational mechanism is pretty much
the same, consisting in the combination of (1) with the linear
subnetwork equations, with minor formal changes. Thus for
the sake of brevity only the device noise will be discussed in
detail. Irrespective of its physical origin, the noise generated by
the active devices may be globally described by a set of nD-
vectors Jhk(ω) whose entries are random phasors of pseudo-
sinusoidal equivalent current sources at the device ports [8].
Specifically, Jhk(ω) represents the noise components falling in
a 1 Hz band located at an offset ω from the steady-state har-
monic Ωhk=hωLO +kωINT. The nDnS-vector obtained by stack-
ing the Jhk(ω) associated with all noise sidebands will be de-
noted by J(ω). In order to carry out a spot noise analysis at a
given frequency offset, we must evaluate the transfer of noise
power from these current sources to the IF. For this purpose,
we first represent the linear part of the front-end as an (nD +
1)-port network NL. The first port of NL (external port) repre-
sents the IF port, while the remaining nD ports are the ordinary
linear subnetwork ports (device ports). The IF termination is
included in NL. The high-frequency sources are also included
in NL together with their internal impedances, and their
voltages are set to zero. We now stack the current and voltage
phasors at the external port of NL at all sidebands ω + Ωhk to
build the vectors IE, VE of dimension nS. Similarly, the current
and voltage phasors at the device ports are stacked into the
vectors ID, VD of dimension nDnS. Taking as positive the cur-
rents entering the nonlinear subnetwork ports, the frequency-
domain equations of NL at all sidebands may be written in the
matrix notation
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The nonlinear subnetwork may be replaced by a linear
multifrequency circuit NN representing its perturbative equiva-
lent in the neighborhood of the quasi-periodic steady state. NN
is described by the conversion equations (1). This multiport
has nS groups of nD ports, each corresponding to one of the
sidebands. At each sideband, we now connect the device ports
of NL to the corresponding group of nD ports of NN to obtain a
linear multifrequency nS-port network N. By combining (1)
with (2) we may express the nS-vector of current phasors at the
ports of N in the form

IE = -YED P [YDD P + Q]-1 J(ω) (3)

Let the phasor of the pseudo-sinusoidal noise current
flowing through the IF load at ωIF be denoted by δIIF(ωIF). As-
suming that the noise sidebands are ordered in such a way that
the IF be the first entry of IE, we may write

δIIF(ωIF) = -R YED P [YDD P + Q]-1 J(ωIF) =∆ -M J(ωIF) (4)

where R is the 1 x nS row matrix [1   0   0   0 ..... 0]. The noise
power delivered to the IF load resistance RIF in a 1-Hz band in
the neighborhood of ωIF (and originating from the device noise
sources) is then given by

ND(ωIF) = RIF <|δIIF(ωIF)|2> = RIF M < J(ωIF) J†(ωIF)> M† (5)

where † denotes the conjugate transposed of a complex matrix,
and <•> denotes the ensemble average. The same kind of
linearized analysis can be used to compute the conversion gain
from ωRF to ωIF, as well as the IF noise spectral densities
originating from the linear subnetwork, the LO, and the
interferer noise. These quantities will be denoted by GTc(ωIF),
NLS(ωIF), NLO(ωIF), and NINT(ωIF), respectively. Assuming
that the circuit is held at a reference absolute temperature T0,
and that the IF termination is noiseless, the spot NF of the
receiver is then given by [7]

F =  
ND(ωIF) + NLS(ωIF) + NLO(ωIF) + NINT(ωIF)

KB T0 GTc(ωIF)
   (6)

where KB is Boltzmann's constant. Let the RF impedance level
of the receiver be denoted by R0. The amplitude of the
minimum detectable signal in a channel of bandwidth B is then
given by [5]

VMDS = 8 R0 KB T0 F B  (7)

COMPUTATIONAL ASPECTS
The computation of the conversion matrix M  by ordinary

methods requires the storage and factorization of the complex
matrix YDD P + Q, whose dimension is nDnS. This approach
may soon become impractical even for front-ends of moderate
size. As an example, consider a circuit containing about 100
transistors and requiring about 100 positive frequencies for an
accurate HB analysis. In this case nD ≈ nS ≈ 200, so that the di-
mension of YDD P + Q is about 40000, corresponding to a real
matrix of dimension 80000. Storing and handling a matrix of
this size is definitely impractical even on large computer sys-
tems, not to mention that the size of many practical problems
may be much larger than this [2].

In order to circumvent this difficulty, we analyze in detail
the structure of M  as defined by (4). We may write

M = R YED P [YDD P + Q]-1 =
= {[( YDD P + Q)tr]-1 (R YED P)tr} tr =∆ { A-1 b} tr (8)

where

A = (YDD P + Q)tr = Ptr YDD
tr + Qtr

(9)
b = (R YED P)tr = Ptr YED

tr Rtr

and tr denotes transposition. Thus M  may be computed by
solving with the GMRES method [9] or some other iterative
procedure a large linear system of the canonical form A  x = b,
with suitable preconditioning. The submatrices YRS (R, S = E,
D) describe the linear subnetwork and are thus block-diagonal
(different frequencies are uncoupled), each (square or rectan-
gular) diagonal block being associated with a single noise side-
band. These submatrices may thus be handled (i.e., stored and
multiplied by other matrices) by ordinary methods without dif-
ficulty. Due to (9), the bulk of the computational effort re-
quired by a GMRES iteration [9] is then spent in performing
matrix-vector products of the form

Ptr g   ;        Qtr g (10)

where g is a generic complex nDnS-vector. On the other hand,
Ptr, Qtr are sums of Toeplitz matrices [6], so that the products
(10) may be expressed by means of discrete convolutions, and
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may be evaluated by the fast Fourier transform [10]. This pro-
vides sufficient numerical efficiency for most applications,
with a relatively slow (asymptotic) dependence on the number
of sidebands of the form nS log nS. Note that while P, Q cannot
be stored in the computer memory because of their size, they
can be re-computed with minimal effort each time they are
needed, starting from a set of Fourier coefficients [6] that can
be typically stored in a few Mbytes (e.g., see [4] and the
example reported in the next section).

The last step of the noise analysis procedure is the compu-
tation of (5). The noise correlation matrix <J(ω) J†(ω)> is for-
mally a complex square matrix of dimension nDnS, which can-
not be directly stored. However, it should be recalled that the
nonlinear subnetwork is a collection of individual devices. Let
the total number of devices be denoted by N, and the number
of ports of the i-th device by ni. Two noise sources belonging
to distinct devices are statistically independent because of their
different physical origins, so that their correlation is zero. On
the other hand, the noise sideband sources belonging to a same
device may be correlated [8]. The maximum number of
nonzero entries of < J(ω) J†(ω)> is thus given by

nJ = ∑
i=1

N

 (ni nS) 
2 << (nD  nS)

2 (11)

where the inequality is justified by the fact that for most de-
vices ni is small (usually 1 or 2). Obviously only the nonzero
elements are computed and stored, and the sparsity of the ma-
trix is exploited in the computation of (5).

AN EXAMPLE OF APPLICATION
Let us consider a typical single-conversion receiver front-

end, whose functional diagram in terms of interconnected
blocks is given in fig. 1. The circuit basically consists of two
doubly balanced mixers arranged in an image-rejection con-
figuration, plus coupling networks, amplifiers, and filters. The
band of operation is 935 - 960 MHz with a fixed IF of 90
MHz. The passband of the RF preselection filter coincides with
the front-end band, and its attenuation at 900 MHz is about 30
dB. The circuit-level description of the front-end is very de-
tailed, and includes many (linear) parasitic components. The
total number of device ports is nD = 208, and the total number
of nodes is 1745. The front-end is analyzed as a single circuit,
so that inter-block couplings that may exist for various reasons
such as imperfect isolation or proximity effects may be ac-
counted for without difficulty. The far-from-carrier noise spec-
tral densities of both the LO and the interferer are assumed
equal to -150 dBc/Hz.

Fig. 2 shows the front-end conversion gain as a function
of the power level of a 915 MHz interfering tone, with 0 dBm
LO power and ωRF = 2π • 947.5 MHz (corresponding to center
band). This curve is obtained by frequency-conversion analysis
of the two-tone quasi-periodic regime generated by the inter-
modulation of the LO and interferer signals. The quasi-peri-
odic regime is computed by INHB analysis with IM products
of the two exciting tones up to the 9th order. The total number
of positive frequencies of the steady state is thus 90, and the
total number of INHB unknowns is 37648. This corresponds to
a nodal HB problem of 315845 unknowns. The average CPU
time required for the nonlinear analysis is about 1860 seconds
per power point on a SUN Ultra 2 workstation. The number of
sidebands is nS = 181, so that each frequency-conversion
analysis requires the solution of a real system of 75296 equa-
tions (631690 nodal equations), and takes about 249 seconds.
The interferer power is swept from -70 dBm in 5 dB steps up
to a very high level (in a relative sense) of +5 dBm, corre-
sponding to over 25 dB gain compression, in order to demon-

strate the excellent power-handling capabilities of the INHB
algorithm.

Fig. 3 shows the total front-end NF as a function of the
power level of the interfering tone. The different contributions
to the NF as defined by (6) are also shown in this figure. The
results may be explained as follows. The LO contribution is
practically zero due to the assumption of perfectly balanced
mixer topologies. At low levels of interference only the inter-
nal mixer noise is significant and the conversion gain is flat, so
that the NF is also flat. Above a certain level of interference,
the receveir gain starts to compress according to fig. 2, so that
the NF starts to increase due to (6). Note, however, that a com-
pression effect is observed on all conversion coefficients, so
that the internal noise ND(ωIF) + NLS(ωIF) is a decreasing
function of the interferer power. Thus the growth of the inter-
nal noise contribution to the receiver NF is less rapid than the
gain drop. On the other hand, the interferer noise contribution
grows linearly with the interferer power because the noise
sideband relative level remains constant (at -150 dBc/Hz in the
present case). Thus the interferer noise may also become sig-
nificant (as in fig. 3) above some level of interference. The
CPU time for a noise analysis is about 838 seconds on a SUN
Ultra 2 workstation.

Fig. 4 shows the amplitude of the minimum detectable
signal (in µV) under the same conditions, as obtained from (7)
with B = 200 kHz and R0 = RIF = 50 Ω. Finally, in fig. 5 the re-
ceiver NF and the minimum detectable signal are plotted
against the distance between the interfering transmitter and the
receiver, under the assumptions of 1 W radiated power at 915
MHz, matched half-wave dipole antennas, and free-space
propagation.

The total memory occupation of the program is about 442
MB. The memory required to store the Fourier coefficients for
the computation of P and Q is about 9 MB, and the memory
required to store the nonzero entries of the noise correlation
matrix <J(ω) J†(ω)> is about 2 MB.
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Fig. 1 - Schematic topology of a microwave front-end.
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Fig. 2 - Conversion gain in the presence of interference.
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Fig. 4 - Minimum detectable signal in the presence of
interference.
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Fig. 3 - Noise figure in the presence of interference.
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Fig. 5 - Effects of distance from source of interference.
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